Contents

1	Ger	neral requirements	2
2 3 4 5	Des Des	Structural design	
	5.1 5.1. 5.1. 5.1. 5.1. 5.1. 5.1.	General design requirements .1 Design engineer	
_	5.2 5.2. 5.2. 5.2.	2.2 Wind loads	11 12
6	6.1 6.2	otechnical investigationFoundation designEarth pressure	13
7	7.1 7.2 7.3 7.4 7.5	Ilding fabric and layout	13 14 14

	7.6	Waterproofing and weatherproofing	14
8	Cor	ncrete and masonry	14
	8.1	Concrete durability	14
	8.2	Crack control	15
	8.3	Post tensioned or precast concrete slab	15
	8.4	Ground slab moisture barrier and bedding sand	15
	8.5	External slab	
	8.6	Slab joints	16
	8.7	Masonry	
9	Ste	el and metal	16
	9.1	Protective coatings on steel	16
	9.2	Dissimilar metals	
	9.3	Steel stud wall frame	19
	9.4	Metal capping and flashing	19
	9.5	Metal roof and wall sheeting	19
	9.6	Hold-down anchor.	

1 General requirements

1.1 Structural design

Structural engineering design of the building work is to comply with the relevant requirements of the current National Construction Code (NCC), the *NT Building Act 1993*, the *Work Health and Safety (National Uniform Legislation) Act 2011*, all current relevant Australian Standards and other statutory requirements.

1.2 Definition

For the purpose of this document, the word 'shall' indicates that a statement is mandatory.

1.3 Proprietary truss

Do not specify or use manufacturer prefabricated steel or timber trusses.

1.4 Timber products

Do not use timber material for any part of the structural work without approval.

1.5 Safety in design (SID)

Comply with the Work Health and Safety (National Uniform Legislation) Act 2011.

The design shall consider and incorporate design solutions that minimise the potential for danger during construction as well as during occupation and maintenance.

A SID report detailing the optimal solutions to minimise hazards and risk issues must be provided as part of the documentation work at the conclusion of the design project. Refer to s.22 of the Act, to Regulation 295, and to the NT Code of Practice Safe design of structures.

1.6 Maintainability

Any part of the building, or a building element where maintenance needs to be undertaken, shall be provided with suitable access to enable works to be safely undertaken and to meet the requirements of the *WHS (NUL) Act 2011* and the WHS Regulations.

1.7 Construction phase shop drawings and requests for information (RFIs)

The Engineer engaged for the structural design is required to review Shop Drawings (precast concrete and/or steelwork) to ensure the intent of the design has been correctly interpreted. The review should include general arrangement, member sizes and connection details, but should not be regarded as a check of dimensions. In addition, the Design Engineer is also responsible for responding to any RFIs during construction.

2 Standards

The following standards shall be used as a minimum in the design of the building structure.

Table - Australian	Table – Australian Standards				
Use Standards, and	Use Standards, and their amendments, current as at the date for the close of tenders				
except where differ	ent editions and/or amendments are required by statutory authorities,				
including, but not li	mited to, NATA and the National Construction Code including the				
Building Code of A	ustralia.				
Designation	Title				
AS 1170 (series)	Structural design actions				
AS/NZS 1170.0	- General principles				
AS/NZS 1170.1	- Permanent, imposed and other actions				
AS/NZS 1170.2	- Wind Actions				
AS 1170.4	- Earthquake actions in Australia				
AS 1562 (series)	Design and installation of sheet roof and wall cladding				
AS 1562.1 - Metal					
AS 1657 Fixed platforms, stairways, walkways and ladders					
AS 2047	Windows and external glazed doors in buildings				
AS 2159	Piling – Design and Installation				

Table – Australian Standards					
Use Standards, and their amendments, current as at the date for the close of tenders					
except where differ	ent editions and/or amendments are required by statutory authorities,				
including, but not li	mited to, NATA and the National Construction Code including the				
Building Code of A	ustralia.				
Designation	Title				
AS 2312 (series)	Guide to the protection of structural steel against atmospheric				
AO 2012 (Selles)	corrosion by use of protective coatings				
AS 2312.1	- Paint coatings				
AS/NZS 2312.2	- Hot-dip galvanising				
AS 2870 Residential slabs and footings					
AS 3600	Concrete structures				
AS 3700 Masonry structures					
AS 3798	Guidelines on earthworks for commercial and residential developments				
AS 3850 (series)	Prefabricated concrete elements				
AS 4100	Steel structures				
AS 4600	Cold formed steel structures				
AS 4678	Earth retaining structures				
AS/NZS 4680 Hot-dip galvanized (zinc) coatings on fabricated ferrous articles					
AS/NZS 4792	Hot-dip galvanized (zinc) coatings on ferrous hollow sections, applied				
AS/NZS 4/ 8Z	by a continuous or a specialised process				
AS 5131 Structural steelwork - Fabrication and erection					

The above are the minimum standards that should be considered. All other relevant standards and codes must be adopted as deemed necessary.

3 Design drawings

The drawings shall comply with the following principles/requirements.

The drawings shall comply with NTG Technical Drawings Part 1 and Part 3.

Ensure there is no conflict between the Structural drawings and other discipline drawings.

Depicting structural details on other discipline drawings is not acceptable.

Incomplete structural documentation is not acceptable.

Structural notes must not be excessive with only the notes that are relevant shall be shown. Notes that are not relevant shall not be included.

All graphical details shall be drawn to the correct scales. The outlines and details of a representation must be proportional to the represented part.

Details shall be unambiguous and clear. For any feature of a drawing, there shall be only one interpretation. It must be easy for people who will read and use the drawings to understand the drawings. Details by description without actual graphical illustration is not acceptable.

Details of a specific nature and particular to an individual project must be fully detailed in the drawings. It is important to ensure that the coverage is comprehensive. If a specific detail is required that is not similar to any other previously shown detail, it must be shown.

Details of specific nature based on standardised details are not acceptable. The details shall be purposely drawn to reflect and illustrate the detail envisaged.

Details shall be clearly cross-referenced to the appropriate design layout/elevation/section. Poor or erroneous cross-referencing is not acceptable. Omission of cross referencing is not acceptable.

Details not relevant or applicable to the project shall not be included as part of the detailing.

Areas of floor designed to support specific localised heavy loads (e.g. mechanical equipment or compactus storage) shall be noted and highlighted on the structural floor plans.

Amendments when required on drawings must be shown clouded and tagged with an appropriate mark in accordance with NTG Technical Drawings Part 1. Additionally, the amendment table within the title block of the drawing must be updated (with a brief description) to reflect the amendment.

4 Design deliverables

Drawing submittals for design review at each of the major phases shall meet the level of completion listed below.

Table – Design deliverables						
Deliverables	25%	50%	75%	95%	100%	
(But not	Conceptual	Major design	Detailed	Deliverables	Contract	
limited to)	design and drawings established	elements completed and design analysis completed	drawings and technical specification developing	substantially complete	document ready	

General structural notes, site plan, drawing index	Preliminary design criteria and parameters established	Address comments from previous review Preliminary project specific structural notes presented	Address comments from previous reviews Project specific structural notes finalised	Address comments from previous reviews Amend as required	Complete
Ground slabs, column, wall, and footing layout plans, and related details	Preliminary layout plans and schedule showing slabs and footing information	Address comments from previous review Layout plans, legend, and schedule (showing type, size and reinforcement) confirmed and presented Preliminary details presented	Address comments from previous reviews Layout plans and related details complete	Address comments from previous reviews Amend as required	Complete
Wall elevations and related details	Preliminary elevations showing design intent and type of construction	Address comments from previous review Elevations with schedules showing steel member or reinforcement sizes Preliminary details presented	Address comments from previous reviews Elevations with schedules complete Details developing and at an advanced stage	Address comments from previous reviews Elevations and related details complete	Address comments from previous reviews Complete

Sections and related details	Preliminary sections showing design intent	Address comments from previous review	Address comments from previous reviews	Address comments from previous reviews	Address comments from previous reviews
		Sections and related details developing and presented	Sections and related details progressing and at an advanced stage	Section and related details complete	Complete
Concrete	Preliminary	Address	Address	Address	Address
beam, column,	layout plan	comments	comments	comments	comments
suspended slab	showing	from previous	from previous	from previous	from previous
layout, stairs, lift shaft plans,	design intent and	review	reviews	reviews	reviews
and related	approximate	Plans and	Plans and	All concrete	Complete
details if	member sizes	schedules	schedule	elements and	
applicable		(showing type,	complete	associated	
		size and		details	
		reinforcement)	Details	complete	
		confirmed,	progressing		
		including	and at an		
		positive and	advanced		
		negative	stage		
		reinforcement			
		plans			

Steel/concrete	Preliminary	Address	Address	Address	Address
column and	concept	comments	comments	comments	comments
roof framing	showing	from previous	from previous	from previous	from previous
layout plans	design intent,	review	reviews	reviews	reviews
and related	layout plans	1001000	1001000	1001000	10110110
details	and	Column	Framing layout	All steelworks	Complete
dotallo	approximate	layouts, roof	plans, and	and associated	Complete
	member sizes	framing layout	member sizes	details	
	1110111001 01200	plans, member	complete	complete	
		schedules	Complete	Complete	
		(with steel	Steel		
		sizes)	connection		
		confirmed and	details		
		presented	progressing		
		procented	and at an		
		Developing	advanced		
		steel	stage		
		connection	otago		
		detail details			
Miscellaneous	Preliminary	Address	Address	Address	Address
structures/items	information	comments	comments	comments	comments
and/or details	showing	from previous	from previous	from previous	from previous
(e.g. walkways,	design intent	review	reviews	reviews	reviews
stringer stairs,	area garantea				
screens,		Elevations,	Elevations,	All details	Complete
external ceiling,		sections, plans	sections,	complete	
retaining walls,		confirmed and	layout plans	1	
debris resistant		presented	and related		
glazing, seismic		•	details		
restraints,		Construction	progressing		
decking, etc.)		type shown	and at an		
,		confirmed and	advanced		
		presented	stage		

5 Additional design requirements

Comply with the following additional specific requirements.

5.1 General design requirements

5.1.1 Design engineer

The structural engineer responsible for the design and certification shall be a NT Registered Building Practitioner (Structural) with extensive experience and proven track record in design and construction for buildings commensurate with the value, usage and complexity of the proposed building works.

Provide an efficient structural design and high-quality documentation.

Review reports and address any comments of the independent third party review engineer.

Provide the required Section 40 engineering certificate and documentation to enable the Building Certifier to issue a Permit to Build.

Completion of a technical specification section relevant to this discipline.

5.1.2 Design life

The building design life for the primary structure (floor foundations, walls and structural framing and roof structure) is defined to be 50 years as per the requirements of the Building Code, AS 1170.0 and AS 3600.

5.1.3 Building importance level

The buildings are to be designed to NCC Importance Level (IL) 3.

Listed below are some examples of IL 3 building types:

- Major structures (affecting crowds) with high consequence for loss of human life or very great economic, social or environmental consequences in the event of failure.
- Buildings and facilities where more than 300 people can congregate in one area.
- Buildings and facilities with a primary school, a secondary school or day care facilities with a capacity greater than 250.
- Building and facilities with a capacity greater than 500 for colleges or adult educational facilities.
- Health care facilities with a capacity of 50 or more residents but not having surgery or emergency treatment facilities.
- The "strengthened area" within an aged care building (as defined in the NCC)-
- · Jails and detention facilities.
- Any occupancy with an occupant load greater than 5000.
- Power generating facilities, water treatment and waste water treatment facilities, any other public utilities not included in Importance Level 4.
- Buildings and facilities not included in Importance Level 4 containing hazardous materials capable of causing hazardous conditions that do not extend beyond property boundaries.

5.1.4 Structural robustness

Comply with the requirements of AS 1170.0, the NCC and ABCB Structural Robustness Handbook.

A structure shall be designed and constructed so that it will not be damaged to an extent disproportionate to the original cause, by events such as fire, explosion, impact or consequences of human errors.

Low-rise concrete panel buildings (which are prone to progressive collapse) shall be provided with more than one means of lateral stability so that there is an alternative load path. For example, a roof framing system relying on a single set of roof cross bracing (to transfer lateral loads) is not acceptable. A minimum of two sets of cross bracing to give an alternative load path is required.

5.1.5 Deflection limits

Generally, deflection limits shall be as per AS 1170.0.

Table – Deflection limits						
Item	Description	Applied Load	Criteria Adopted			
Roof supporting elements	Mid-span deflection	G + Ψ _I Q + W _S	Span/300			
		G + Ws				
Floors and floor supports	Mid-span deflection	G + Ψ _I Q	Span/350 or 30mm			
			Span/500 (under blockwork walls			
			/ glazing)			
Wall elements	Mid-height deflection	Ws	Height/250			
Transfer structures	Mid-span deflection	G + Ψ _I Q	Span/500			

5.1.6 Non-structural parts and components

Non-structural parts and components, including architectural, mechanical, and electrical components, and their fastenings, shall be designed for horizontal and vertical earthquake forces as per the **Design of parts and components** Section of AS 1170.4 for all non-domestic buildings. Refer to the respective discipline's Minimum Design Standard (MDS) for further instructions.

5.1.7 Modification to existing structure

A structural assessment of the existing structure by visual inspection and examination of the original/asbuilt drawings shall be undertaken to confirm the accuracy of the original drawings, assessment of the impacts on the overall structure and the effect on the localised area affected by the proposed modifications.

5.1.8 Ecological sustainable design (ESD)

The design shall consider and incorporate ESD requirements into the structure wherever possible. This includes, but is not limited to: consideration in the use of steel (structural steelwork or reinforcement) manufactured from high recycled steel content, and General Purpose Blend (GB) cement that contains manufactured by-product slag, or a concrete mix that contains fly ash.

5.2 Design loads

The design of the building structure (for stability, strength and serviceability) shall be capable of resisting the loads listed below:

- Design superimposed dead loads
- · Design live loads
- Special design live loads in localised areas such as compactus storage
- · Design wind loads
- Design earthquake loads
- · Design bearing pressures for foundation material
- · Any other relevant loadings

All design loads and their parameters relevant to the project shall be fully stated on drawings.

5.2.1 Dead and live loads

The dead loads shall be calculated in accordance with the principles of AS 1170.0 and AS 1170.1 and utilise a gravity constant of 9.81m/s².

Superimposed Dead and Live Loads are to be calculated in accordance with the minimum loads described below (unless exceeded by the loads described in AS 1170 in which case the design must be for the higher load).

Table – Typical minimum loads for calculation Superimposed Dead Loads, and Live Loads						
Area/Use	Load	Load (kPa)	Load (kN)	Comments		
		0.25	-			
Roof	Live Load	4.0 for accessible roofs	1.8	-		
Typical Suspended	Dead Load	0.5	-	-		
Floor Level	Live Load	3.0	2.7	Offices for general use, hospital wards.		
Basement Level Slab	Surcharge Load	Refer Geotechnical Report	-	-		
	Live Load	2.5	13	Light traffic.		

Table – Typical minimum loads for calculation Superimposed Dead Loads, and Live Loads							
Area/Use	Load	Load (kPa)	Load (kN)	Comments			
Stairs/Landings/Foyers	Dead Load	0.5	-	-			
Stall 5/Landings/Poyers	Live Load	4.0	4.5	-			
Plant Rooms	Dead Load	Plant Loads	-	-			
Plant Rooms	Live Load	5.0	4.5	-			
Basement Walls	Surcharge Load	Varies	-	This will vary depending on the methodology chosen to deal with ground water.			

Areas of floor designed to support specific localised heavy loads (e.g. from compactus storage or mechanical plant equipment or vehicles) shall be noted and shaded on the structural floor plans.

5.2.2 Wind loads

The wind forces applied to the building are determined in accordance with AS 1170.2 based on the criteria below.

Table – W	Table – Wind forces determination criteria						
Item	Description	Symbol	Value	Comment			
Site and	Terrain category	-	To be determined	Design for worst case direction.			
Building	Region	-	С	-			
Data	Reference probability of exceedance	-	1,000	-			
	Regional wind speed (ultimate)	V1,000	70 m/s	-			
	Regional wind speed (serviceability)	V20	45 m/s	-			
Wind	Topographic factor	Mt	>1.0	Refer Contour Survey to determine.			
Data	Site shielding factor	Ms	1.0	Applies for worst case direction			
	Wind direction multiplier	Md	1.0	Applies for worst case direction.			
	Internal pressure coefficient (ultimate)	Срі	+0.7, -0.65	Design for worst case scenario.			

5.2.3 Earthquake loads

The building is to be designed to resist earthquake loads for a building of Importance Level 3 as defined by the NCC and AS 1170.4.

6 Geotechnical investigation

Prepare a written geotechnical investigation report of the site including any car parking areas.

The report shall provide information on subsurface conditions across the site, including but not limited to:

- Assessment of soil materials encountered across the site
- Site classification in accordance with AS 2870
- Recommendations on site preparation and earthworks requirements, including suitability of in-situ
 material for re-use as fill, placement of fill, compaction criteria and testing requirements
- · Recommendations on suitable foundation systems
- Foundation design parameters, including allowable soil bearing pressures and estimated soil settlements
- Assessment of the site factor for earthquake design in accordance with AS 1170.4
- · Assess pavement requirements and provide pavement subgrade design parameters, including CBR
- · Comments on site drainage and groundwater
- Identify anticipated construction difficulties and provide possible solutions

The investigation shall be carried out by an experienced and qualified Geotechnical Engineer.

6.1 Foundation design

Foundation design shall be based on the recommendations of the Geotechnical Report prepared for the project. Fill material shall be select fill and compacting to 95% (min) MMDD. Depth of footings to be determined by Structural Engineer.

The project title, the name of the consultant / author, the report number, and the issue date of the Geotechnical Report shall be clearly noted on the drawings.

6.2 Earth pressure

Any designed structure, including retaining walls, shall be designed to resist earth pressures in accordance with the recommendations from the Geotechnical Investigation. Basement walls and floors must be protected via subsoil drains.

7 Building fabric and layout

7.1 Location of walls, columns and wall bracing

The design of the structure shall incorporate flexibility for future changes in internal layout or use. This requirement must be reflected in the design of the building structure. The use of internal walls as load bearing or structural walls is to be avoided where possible.

Careful consideration must be given to the location of columns within the building. Columns within the body of a functional space should be avoided wherever possible.

Walls required for bracing purposes should be carefully located so as not to impact severely on flexibility to rearrange the internal layout in the future.

7.2 Fire resistance

The structure and its component members shall be designed for the appropriate fire resistance in accordance with the relevant Australian Standards and the requirements of the NCC.

7.3 Strength

The structure and its component members shall be designed such that their design strength exceeds the appropriate design actions in accordance with the NCC and the relevant Australian Standards.

7.4 Stability

The structure as a whole and its parts shall be designed to prevent instability due to overturning, uplift and sliding in accordance with the NCC and the relevant Australian Standards.

7.5 Serviceability

The structure and its component members shall be designed for serviceability by controlling or limiting deflection, lateral drift, cracking, and vibration in accordance with the relevant Australian Standards.

7.6 Waterproofing and weatherproofing

The exterior building fabric shall be resistant to water penetration. The fabric shall not permit penetration of uncontrolled water when tested in accordance with AS 2047 under a water penetration resistance test pressure of 630 Pa.

Floors, walls and lift pits shall be fully tanked where below grade or subject to hydrostatic pressure.

8 Concrete and masonry

8.1 Concrete durability

All concrete elements of the structure shall be designed for durability in accordance with the **Design for durability** section of AS 3600. Designs must, as a minimum, be aligned to the exposure classification of particular concrete surfaces as detailed below.

Table – Concrete durability				
Item	Description	Value	Comment	
Concrete Durability	Design life	50 years	-	
	Concrete exposure classification	A2	Surfaces in interior environments / surfaces in contact with ground protected by damp proof membrane	
		B1	Near coastal / surfaces in above-ground exterior environments (1km to 50km from coast or tidal estuaries)	
	Concrete strength	32MPa (f'c) minimum	Vehicle pavements in any location	

8.2 Crack control

Reinforcement for crack control shall be provided at, or better than, the ratios stipulated in AS 3600. This requirement does not replace any requirement for reinforcement specified for structural integrity.

8.3 Post tensioned or precast concrete slab

The adoption of post tensioned or precast concrete system for slab or beam is not allowed without the approval of DIPL.

If post tensioned slabs are installed, the location of all tendons must be marked on the underside of the slab to ensure that any future core holes cut in the slab do not intersect any stressing cables.

8.4 Ground slab moisture barrier and bedding sand

All floor slabs on ground shall be placed on moisture barrier equivalent to 300 micron thick 'Fortecon' polythene membrane, turned up at the perimeter and with all joints and penetrations sealed.

Do not use or specify 200 or 300 µm termite barrier polymer sheet (e.g. HomeGuard or similar product) as moisture barrier or damp proof membrane is prohibited.

Bedding sand shall be a naturally occurring material that has a high clay/fine silt content to ensure the material can hold its shape when used under concrete slabs. Do not specify or use manufactured quarry sand as bedding. This must be clearly noted on the drawings.

8.5 External slab

External slabs associated with buildings are to be documented as part of structural documentation. This includes slabs for under cover walkways, verandahs, carports, and path slabs linking between buildings.

Do not document external slabs of buildings as part of civil design documentation.

8.6 Slab joints

Slab joints whether for contraction, expansion, or construction must be considered and documented as part of structural documentation. All joint locations to be clearly shown on the slab plans.

Slabs with architectural significance or visible surfaces must be carefully designed to minimise cracking.

Do not document joint locations and details of building slabs as part of architectural or civil documentation.

8.7 Masonry

Drawings to specify clean out inspection holes at base course of all reinforced and core fill cores. Clean out progressively as the work proceeds all cores which are to be filled.

Drawings are required to show full elevations of all external and internal shear blockwork walls.

Window sills are required to be fixed to bond beam with galvanised N12 shear pins at 600mm centres and at each window mullion.

All external blockwork, wet area blockwork, blockwork below ground level and for the first 3 base courses above finished floor level shall be constructed using mortar with a damp-proof admixture such as "Cementaid Calblack" or similar. This must be clearly noted on the drawings.

All external blockwork walls shall be concrete filled all cores.

The use of unreinforced blockwork or brick masonry walls is prohibited.

Blockwork control joints shall be provided in walls to minimise the effects of linear shrinkage, temperature variations, creep, and subgrade movement. All joint locations to be clearly marked on slab plans and wall elevations.

9 Steel and metal

9.1 Protective coatings on steel

Durability

The steel protection system shall satisfy the requirement of very long term durability of 25 years to first major maintenance and be warranted for a minimum of 20 years. Name the Principal as the warrantee.

Coating damage caused by welding or flame cutting, or during handling, transport, or erection shall be reinstated in accordance with the provisions of AS/NZS 4680, **Repair after galvanizing** section.

Bases of all external structural steel columns must be coated with "Epireze 215", coated 100mm below slab level or top of base plate, and extend to 100mm above finished concrete slab or above concrete collar surface level at the steel.

External steel columns / stumps surrounded by natural ground shall be encased with a reinforced concrete collar. The collars must extend horizontally a minimum of 100mm from the steel. The collars must be sloped down away from the column and finish not less than 100mm above natural ground level at the highest ground level point adjacent to the concrete collar.

Guide Notes

The steel protective coating/s for the project is/are to be selected from the following Table with options of inorganic zinc silicate (IZS), hot dip galvanised (HDG), or polyurethane system. Following the identification of the building location and the finish required, select and specify the appropriate coating/s from the Table. The selection of coating is to be read in conjunction with the associated NOTES below the table.

Do not use other protective coatings without approval.

Coating required is HDG, IZS, or polyurethane system (subject to the building location and finish required by the design architect), for all structural steelwork.

by the design architect), for all structural steelwork.				
Table – Steel protective coating selection				
Building	Coating	Comment		
Location				
Inland tropical (areas more than 0.5km from coast or estuary)	Hot dip galvanised (HDG) - As per Table 1 of AS/NZS 4680	Steelwork to be galvanised shall be prepared and pre-treated to the requirements of AS 1627.4 and hot dip galvanized in accordance with AS/NZS 2312.2, AS 4650, AS/NZS 4680, and with the Standard Specification for Hot Dip Galvanizing, published by the Galvanizers Association of Australia, accessible via https://gaa.com.au/standard-specification-for-hot-dip-galvanizing/ .		
	Inorganic zinc silicate (IZS) - 75 µm DFT (min)	All non-galvanised steelwork is to be blast cleaned to a class 2½ finish and primed with 75 microns inorganic zinc silicate. Top or finish coat to be as per architectural specification.		
Marine (areas 0.5km from coast or less)	Polyurethane System, total DFT 325 µm - Consists of 75 µm IZS primer, 200 µm high build epoxy (2 pack) intermediate coat, and 50 µm polyurethane (2 pack) topcoat	Prepared and primed as above. Colour to be as per architectural specification.		

NOTES:

1. For this Guide, durability is defined as the time elapsed before the first major maintenance (recoating) of a coating system becomes necessary, to arrest corrosion.

- 2. The objective is to achieve maximum durability compatible with the 50 years design life of the structural steelwork, or equal to the expected service life of the structure as defined in the Brief or NCC.
- 3. The design of the structure influences the choice of a protective coating. As a general rule, important, difficult to access, and complicated structures should be given long-life systems to reduce the amount of costly maintenance. More durable coating at the beginning is more sustainable and this will lead to cost saving in the long run with less or no recoating required (lower lifecycle cost).
- 4. Any components of the structure which are not accessible after assembly should be provided with a corrosion protection system that will remain effective for the service life of the structure. If this cannot be achieved by means of a protective coating system, other measures, such as manufacturing from corrosion-resistant material, designing for replacement, or specification of a corrosion allowance, should be taken.
- 5. IZS and HDG have been chosen as the preferred steel protective coating systems due to their proven performance, superior durability and less maintenance (lower frequency of recoating required) than other products. Both have been shown to have a very long life to first maintenance in most environments and often no maintenance will be required during the entire life of the project.
- 6. As a guide, colour or architectural paint coated finish steel shall have a protective coating of IZS. Buildings located within the tropical, arid and more than 0.5km from the coast or tidal estuaries shall be coated with IZS or HDG. Steel surfaces vulnerable to corrosion in the coastal fringe would require a polyurethane coating system. Coastal fringe includes areas up to 0.5km from the coast or tidal estuaries.
- 7. The coating systems apply to all structural steelworks of the project, including internal and external (exposed) located steel members. This standardised approach minimises confusion and errors in design and fabrication, easier for quality control in verification and inspection, and provides consistency among all DIPL projects.
- 8. Specifiers to nominate the coating systems suitable for the project based on the coating options and criteria from the Table as well as other criteria stated in this Guide.
- 9. For works associated with refurbishment of existing steelwork, minor and temporary structures, or if only a shorter working life is required, a cheaper, less durable system may be sufficient. However, this will need to be assessed on a case by case basis, and be subject to approval by DIPL.
- 10. For this Guide, the atmospheric corrosivity category has been assessed as C5 for the areas of Coastal fringes, Tropical Inland or C4 for the areas north of Tennant Creek and up to the Top End C5 region, and C3 for the arid areas south of Tennant Creek to Central Australia.
- 11. In the regional centres such as Tenant Creek and Alice Spring Springs where HDG facility is unavailable, specifiers are reminded to also consider local industry capacity to undertake the coating work, and the logistics of having to have the coating undertaking elsewhere if HDG is specified for the project in the area.
- 12. Due to potential surface exposure to micro-climatic circumstances of damp and mild humidity, condensation, acidic or alkaline (fallout) mist generated from the air-conditioning cooling tower, extreme hot or cold weather, and windborne abrasives (e.g. sand or soil), which can contribute to coating degradation, the areas south of Tennant Creek to Central Australia within the NT has been assessed as C3 in atmospheric corrosivity category.

9.2 Dissimilar metals

Contact between dissimilar metals shall be avoided to prevent galvanic corrosion. Special attention is required to reliably achieve isolation between dissimilar metal surfaces using marine-grade stainless steel inert spacers or washers.

9.3 Steel stud wall frame

Structural stud frames of light gauge "C" sections shall be no less than 1.6mm BMT and must be fully detailed.

Drawing details shall include, but not be limited to, full elevation of every wall frame, member section sizes, welding connection, galvanised hold-down bolt information, and specification of Alcor flashing between base of bottom plate and concrete.

Fixing of bottom plates to concrete slab must be by galvanised cast-in bolts. Do not use other mechanical fixings, nor chemical anchors, for the fixing without approval.

Do not specify manufacturer proprietary systems.

Do not specify manufacturer to design, manufacture, and certify for structural stud wall frames.

9.4 Metal capping and flashing

All exposed parts of flashing and capping are to be screw fixed with No. 14 class 4 HH screws with EPDM seal. Fixing distances to be fully detailed and in accordance with AS 1562.1:2018 for cyclonic regions. This must be noted on the drawings.

9.5 Metal roof and wall sheeting

All metal sheeting to be Colorbond steel.

Sheeting thickness to be 0.48mm BMT minimum with Class 4 finish fixing screws.

Ceiling sheeting thickness can be 0.42mm BMT.

9.6 Hold-down anchor

All vertical hold-down anchors are to be cast-in system.

Do not use other mechanical, nor chemical anchors as column or stub column hold-downs without approval.

